Brain

      • AI Agents
      • Armor Building Formula
      • Basic Sourdough Boule Recipe
      • Bayes Classifier
      • Bayes Rule
      • Bayesian Statistics
      • Bias Variance Tradeoff
      • Bootstrapping
      • Case When (SQL)
      • Chocolate Buttercream Frosting Recipe
      • Chocolate Cake Recipe
      • Classical Test Theory
      • Classification
      • Coefficient of Variation
      • Common Table Expressions
      • Confirmatory Factor Analysis
      • Creating an R Package
      • Cross Validation
      • Deep Learning
      • Embeddings
      • Faceting Seaborn Plots
      • Fine Tuning LLMs
      • Flex Creek Running Notes
      • Foundational LLMs and Text Generation
      • Generalized Linear Model (GLM)
      • Git
      • Go
      • Google Cloud (GCP)
      • Google Gemini
      • Google Gen AI Course
      • Gradient Descent
      • Install Software in Linux
      • Item Response Theory
      • Julia
      • Julia Packages and Environments
      • K Nearest Neighbors
      • Kettlebell Complexes
      • LaTeX
      • Likelihood
      • Linear Discriminant Analysis
      • LLM Evaluation
      • Local Regression
      • Make and Makefiles
      • Maximum Likelihood Estimation
      • Middleware
      • Minimalist Training
      • Mixed Methods Appraisal Tool
      • MLOps
      • Model Fit Statistics
      • Poisson Regression
      • Postgres
      • Principal Component Analysis
      • Prompt Engineering
      • Pushing to Multiple Git Remotes
      • Pytest Fixtures
      • Python
      • Python Package Development
      • Quarto
      • Quarto Templates in R Packages
      • R
      • R Package Maintenance
      • Recursion
      • Regex
      • Regularized Regression
      • Resampling
      • Retrieval Augmented Generation (RAG)
      • Running R Scripts from the Command Line
      • Shell Commands Cheat Sheet
      • Sourdough Bread
      • Splines
      • SQL Window Functions
      • SQLite
      • Standardization (statistics)
      • Structural Equation Modeling
      • Toll House Bars
      • Variadic Functions in Go
      • Vertex AI
      • Working with SQL DBs in Go
      • Writing for Busy Readers
      • Writing Math in Obsidian
      • Writing to a Database with Go and SQLite
    Home

    ❯

    Google Gen AI Course

    Google Gen AI Course

    Mar 31, 20251 min read

    • 5dgai
    • ai
    • google

    This is a hub for notes and codelabs/notebooks associated with Google’s 5 Day Intensive Generative AI Course.

    Notes

    • Google Gemini: Introduction and snippets to the Gemini developer API via the Python SDK
    • Foundational LLMs and Text Generation
    • Prompt Engineering
    • LLM Evaluation
    • Embeddings
    • AI Agents
    • Fine Tuning LLMs
    • MLOps

    Code Labs & Kaggle Notebooks

    • Day 1 - Prompting
    • Day 1 - Evaluation and Structured Output
    • Day 2 - Document Q&A with RAG
    • Day 2 - Embeddings and Similarity Scores
    • Day 2 - Classifying embeddings with Keras and the Gemini API
    • Day 3 - Function Calling with the Gemini API
    • Day 3 - Building an agent with LangGraph
    • Day 4 - Fine Tuning a Custom Model
    • Day 4 - Google Search Grounding with the Gemini API. Grounding is a framework that gives the model access to Google Search (in this case) to confirm answers.

    Whitepapers

    • Foundational LLMs and Text Generation
    • Prompt Engineering
    • Embeddings and Vector Stores
    • AI Agents
    • Solving Domain-Specific Problems Using LLMs
    • Operationalizing Generative AI on Vertex AI

    Videos

    • Link to podcast playlist
    • Link to livestream playlist

    Graph View

    • Notes
    • Code Labs & Kaggle Notebooks
    • Whitepapers
    • Videos

    Backlinks

    • Embeddings
    • Brain

    Created with Quartz v4.4.0 © 2025

    • GitHub
    • Discord Community